Optimization and screening of solid lipid nanoparticle production for gene delivery by factorial design and response surface methodology

نویسندگان

چکیده

Aim: A successful gene therapy requires a delivery system for overcoming various biological barriers. For this, we adapted the factorial design and response surface methodology to cationic solid lipid nanoparticle production process. Methods: Screening optimization of formulations were carried out with 3 factors levels using Box-Behnken Design. Then, nanoparticles physicochemically characterized. Furthermore, optimal SLN formulation is examined in terms complex formation plasmid DNA, its protection potential against nucleases, cytotoxicity profile, storage stability. Results: Response-surface analyses demonstrated that selected quadratic model holds significance particle size zeta potential. The interaction independent variables was statistically determined. Optimization prediction performed obtained second-order polynomial equations. Optimal complexes found be nanosized, positively charged their polydispersity-index values below 0.3 as an indicator being monodispersed.  Cytotoxicity compatible further studies no significant increase observed until day 21 60 polydispersity-index. Conclusion: provides good basis produced developed systematic. Briefly, this could used obtain SLNs desired conditions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Chitinase Production by Bacillus pumilus Using Plackett-Burman Design and Response Surface Methodology

A soil bacterium capable of degrading chitin on chitin agar plates was isolated and identified as Bacillus pumilus isolate U5 on the basis of 16S rDNA sequence analysis. In order to optimize culture conditions for chitinase production by this bacterium, a two step approach was employed. First, the effects of several medium components were studied using the Plackett-Burman design. Among various ...

متن کامل

Optimization of Chitinase Production by Bacillus pumilus Using Plackett-Burman Design and Response Surface Methodology

A soil bacterium capable of degrading chitin on chitin agar plates was isolated and identified as Bacillus pumilus isolate U5 on the basis of 16S rDNA sequence analysis. In order to optimize culture conditions for chitinase production by this bacterium, a two step approach was employed. First, the effects of several medium components were studied using the Plackett-Burman design. Among various ...

متن کامل

preparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis

کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.

Statistical Optimization of Conditions for Maximize Production of Mannan by Saccharomyces Cerevisiae Using Response Surface Methodology

In view of the increase in Saccharomyces cerevisiae mannan content, the culture condition for S.cerevisiae were optimized in this study. The influence of culture condition such as original pH, inoculum size, and temperature on mannan production were evaluated using Response surface methodology. The mathematical model was established by the quadratic rotary combination design. with the order of ...

متن کامل

Statistical Optimization of Conditions for Maximize Production of Mannan by Saccharomyces Cerevisiae Using Response Surface Methodology

In view of the increase in Saccharomyces cerevisiae mannan content, the culture condition for S.cerevisiae were optimized in this study. The influence of culture condition such as original pH, inoculum size, and temperature on mannan production were evaluated using Response surface methodology. The mathematical model was established by the quadratic rotary combination design. with the order of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Experimental biomedical research

سال: 2021

ISSN: ['2618-6454']

DOI: https://doi.org/10.30714/j-ebr.2021165779